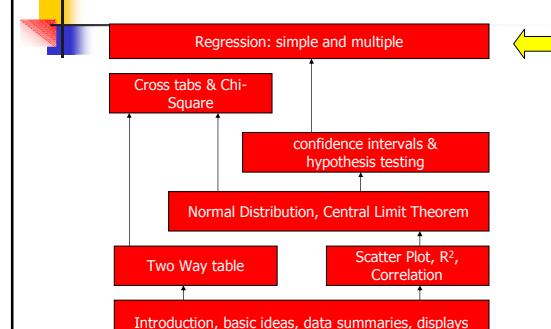


PUB – POS 316 Week 14a


Simple linear regression

Navid Ghaffarzadegan

navidg@gmail.com

Last updated – Jan 1, 10

Course Road Map

PUB/POS 316 Week 14

Navid Ghaffarzadegan

2

Agenda

- Introduction
 - Association
 - Scatter plots
- The linear regression model
- Tests for significance and CI
- ANOVA
- F-test

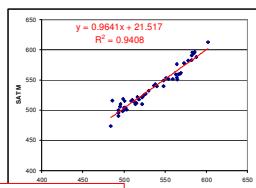
PUB/POS 316 Week 14

Navid Ghaffarzadegan

3

Introduction

- Review from last class
- Association between variables:


Two variables are associated if knowing the value of one of them tells you something about the other one.
- Examples:
 - *Effort and grade*
 - *Positive association*
 - *Price and demand*
 - *Negative association*

PUB/POS 316 Week 14

Navid Ghaffarzadegan

4

Least Square Regression

Population y-intercept
Population slope
Random error
Dependent variable
Independent variable

Navid Ghaffarzadegan

5

Least Square Regression

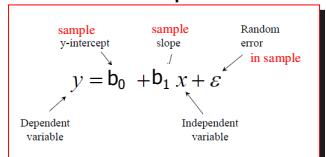
- What if we do not have the complete information about our population?

The equation for the sample regression line is $y = b_0 + b_1 x + \varepsilon$. The components are labeled as follows:

- sample y-intercept
- sample slope
- Independent variable
- Dependent variable
- Random error in sample

What does estimation of slope and intercept mean? (b estimation of β)

PUB/POS 316 Week 14

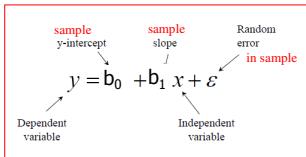

Navid Ghaffarzadegan

6

Tests for significance and CI

- So, if we are estimating the slope and the intercept of the line,...
- WE CAN BE WRONG
- We need to report confidence intervals!
- Confidence interval for the slope and the intercept

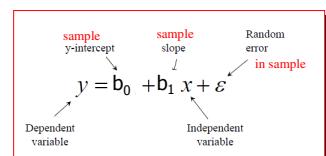
PUB/POS 316 Week 14


Tests for significance and CI

Remember:

- Margin of error = $z \cdot (\text{proper standard deviation})$
- And if you do not have the st dev in population, you use t .
- The same here: (And the good thing is that excel gives you the proper standard deviation (standard error))
- Margin of error = $t^*_{0.025} \cdot (\text{SE})$ $(df=n-2)$

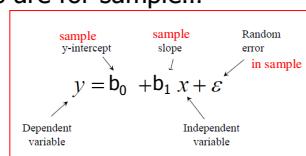
excel


PUB/POS 316 Week 14

Tests for significance and CI

- What will happen for the slope and intercept if we conduct the study many times?
- The important question: Are you confident enough that the slope is not zero? ($\beta_1 \neq 0$)

PUB/POS 316 Week 14



Tests for significance and CI

- Hypotheses: $H_0: \beta_1 = 0$
- $H_a: \beta_1 \neq 0$
- Don't forget: β 's are related to the population – b 's are for sample...

- Very simple:
- $t = b_1 / SE_{b_1}$

PUB/POS 316 Week 14

Tests for significance and CI

- So, 1. we should report confidence intervals for β 's., or 2. We should test hypothesis that β 's are different from zero.
- Back to excel.
- For your own work learning one of these two methods is enough.

PUB/POS 316 Week 14

Navid Ghaffarzadegan

11

Analysis of Variance (ANOVA)

ANOVA:

Analysis of Variance

- As you have seen in this class, we are very interested to learned about variance (or standard deviation) in a data set. Remember?
- How can we explain why there is a variation in a data set?

PUB/POS 316 Week 14

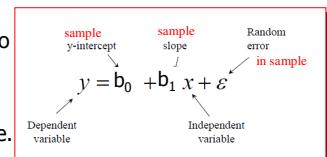
Navid Ghaffarzadegan

12

Analysis of Variance (ANOVA)

Example:

- Why some students perform better?
- Why some countries have a better health status?
- What can explain variation in the divorce rate?
- Isn't that the whole purpose of social science?!!


PUB/POS 316 Week 14

Navid Ghaffarzadegan

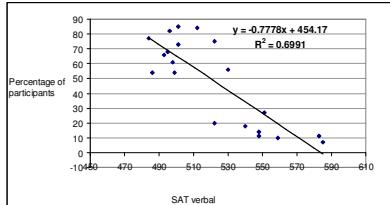
13

Analysis of Variance (ANOVA)

A regression analysis helps us to understand the reasons of the variance in our dependent variable.

- If you can show that $\beta_1 \neq 0$ (i.e., reject the null hypothesis), you are saying that some portion of variance in your dependent variable (y) is explained by your independent variable (x).

PUB/POS 316 Week 14


Navid Ghaffarzadegan

14

F-Test

In general:

- DATA = FIT + RESIDUAL

PUB/POS 316 Week 14

Navid Ghaffarzadegan

15

F-Test

In general:

- DATA = FIT + RESIDUAL

$$y_i = \hat{y}_i + (y_i - \hat{y}_i)$$

$$(y_i - \bar{y}) = (\hat{y}_i - \bar{y}) + (y_i - \hat{y}_i)$$

$$\sum (y_i - \bar{y})^2 = \sum (\hat{y}_i - \bar{y})^2 + \sum (y_i - \hat{y}_i)^2 \quad \text{Sum of Squares}$$

$$\text{SST} = \text{SSM} + \text{SSE}$$

PUB/POS 316 Week 14

Navid Ghaffarzadegan

16

F-Test

- DATA = FIT + RESIDUAL

$$\text{SST} = \text{SSM} + \text{SSE}$$

$$R^2 = \text{SSM} / \text{SST}$$

$$\text{MSE (Mean Square Error)} = \text{SSE} / (n-2)$$

$$F = \frac{\text{SSM} / df_m}{\text{SSE} / df_e}$$

PUB/POS 316 Week 14

Navid Ghaffarzadegan

17

Analysis of Variance (ANOVA)

What you need to remember:

- F shows if your regression shows anything at all. (or it is just a random pattern between your x and y).
- Excel reports F, compares it with F-table, reports p-value. **Just we should be able to read it and know what it is about.**

PUB/POS 316 Week 14

Navid Ghaffarzadegan

18

Analysis of Variance (ANOVA)

- Back to excel. Read F-test.

PUB/POS 316 Week 14

Navid Ghaffarzadegan

19

Summary

- What we need to know:
 - 1. When to conduct a regression.
 - 2. To use excel to conduct regression.
 - 3. To interpret the results.
 - 4. To know how to get t-value and test significance of coefficients and confidence intervals (if t or p or both are not given)

PUB/POS 316 Week 14

Navid Ghaffarzadegan

20

Example

- Example:
- We have data from a sample of computer science students. We would like to test to see if there is any association between their high school math grades and their SAT math.
- What should we do? How?

PUB/POS 316 Week 14

Navid Ghaffarzadegan

21

Summary

- What we need to know:
 - 1. When to conduct a regression.
 - 2. To use excel to conduct regression.
 - 3. To interpret the results.
 - 4. To know how to get t-value and test significance of coefficients and confidence intervals (if t or p or both are not given)

PUB/POS 316 Week 14

Navid Ghaffarzadegan

22

Example

SUMMARY OUTPUT						
Regression Statistics						
Multiple R	0.382981264					
R Square	0.146674648					
Adjusted R Square	0.12851879					
Standard Error	92.39064342					
Observations	49					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	68959.52299	68959.52299	8.078640185	0.006606171	
Residual	47	401193.4566	8536.030992			
Total	48	470152.9796				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	403.2044621	67.38424363	5.983660873	2.84931E-07	267.6448515	538.7640727
X Variable 1	22.72341076	7.99474077	2.84229488	0.006606171	6.640067123	38.80675439

PUB/POS 316 Week 14

Navid Ghaffarzadegan

23

Example

SUMMARY OUTPUT						
Regression Statistics						
Multiple R	0.382981264					
R Square	0.146674648					
Adjusted R Square	0.12851879					
Standard Error	92.39064342					
Observations	49					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	68959.52299	68959.52299	8.078640185	0.006606171	
Residual	47	401193.4566	8536.030992			
Total	48	470152.9796				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	403.2044621	67.38424363	5.983660873	2.84931E-07	267.6448515	538.7640727
X Variable 1	22.72341076	7.99474077	2.84229488	0.006606171	6.640067123	38.80675439

Check if the slope is significantly different from zero.
That's the most important thing

PUB/POS 316 Week 14

Navid Ghaffarzadegan

24

Summary

What we need to know:

- 1. When to conduct regression.
- 2. To use excel to conduct regression.
- 3. To interpret the results.
- 4. To know how to get t-value and test significance of coefficients and confidence intervals (if t or p or both are not given)

PUB/POS 316 Week 14

Navid Ghaffarzadegan

25

Example

SUMMARY OUTPUT						
Regression Statistics						
Multiple R	0.382981264					
R Square	0.146674648					
Adjusted R Square	0.12851879					
Standard Error	92.39064342					
Observations	49					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	68959.52299	68959.52299			
Residual	47	401193.4566	8536.030992			
Total	48	470152.9796				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	403.2044621	67.38424363				
X Variable 1	22.72341076	7.99474077				

PUB/POS 316 Week 14

Navid Ghaffarzadegan

26

Example

SUMMARY OUTPUT						
Regression Statistics						
Multiple R	0.382981264					
R Square	0.146674648					
Adjusted R Square	0.12851879					
Standard Error	92.39064342					
Observations	49					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	68959.52299	68959.52299			
Residual	47	401193.4566	8536.030992			
Total	48	470152.9796				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	403.2044621	67.38424363				
X Variable 1	22.72341076	7.99474077				

PUB/POS 316 Week 14

Navid Ghaffarzadegan

27

Example

SUMMARY OUTPUT						
Regression Statistics						
Multiple R	0.382981264					
R Square	0.146674648					
Adjusted R Square	0.12851879					
Standard Error	92.39064342					
Observations	49					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	68959.52299	68959.52299	8.078640185	0.006606171	
Residual	47	401193.4566	8536.030992			
Total	48	470152.9796				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	403.2044621	67.38424363	5.98368073	2.84931E-07	267.6448515	538.7640727
X Variable 1	22.72341076	7.99474077	2.84229488	0.056606171	6.64067123	39.80675439

PUB/POS 316 Week 14

Navid Ghaffarzadegan

28

Summary

What we need to know:

- 1. When to conduct a regression.
- 2. To use excel to conduct regression.
- 3. To interpret the results.
- 4. To know how to get t-value and test significance of coefficients and confidence intervals (if t or p or both are not given)

- That's almost every thing that we need to know about regression!..

PUB/POS 316 Week 14

Navid Ghaffarzadegan

29