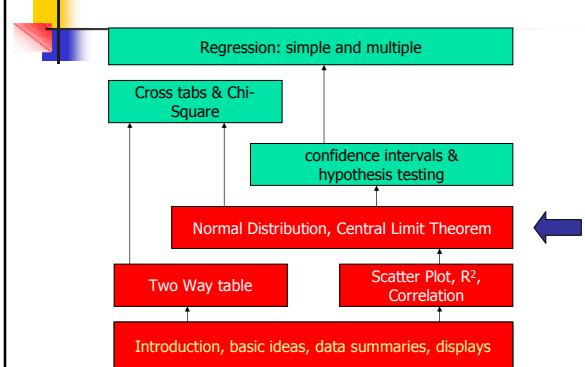


PUB – POS 316 Week 6


Normal Distribution, Central Limit Theorem

Navid Ghaffarzadegan

navidg@gmail.com

Last updated – Jan 1, 10

Course Road Map

PUB/POS 316 Week 6

Navid Ghaffarzadegan

2

Agenda

- Distribution
- Normal Distribution
- Standardized Normal Distribution
- Central Limit Theorem

PUB/POS 316 Week 6

Navid Ghaffarzadegan

3

Population vs. Sample

- We have previously discussed about the difference between sample and population.
- A sample is a part of the population that we “actually” examine to say something about the population.
 - Reasons:
 - It is expensive to study the whole population
 - It is impossible.
 - It is time consuming.
 - It doesn’t matter that much!

PUB/POS 316 Week 6

Navid Ghaffarzadegan

4

Sampling Distribution

- We want to use sample statistics to make statements about unknown population parameters.
- Problems with sampling

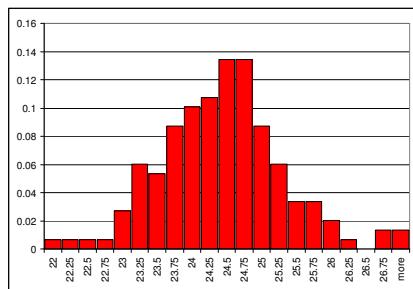
PUB/POS 316 Week 6

Navid Ghaffarzadegan

5

Sampling Distribution

- Example: Biological clocks
- Many plants and animals have biological clocks that coordinate activities with the time of the day. Interestingly it is not always 24 hours. Depends on locations.
- Researchers have gathered data on 149 locations. Let's examine the distribution of the data.

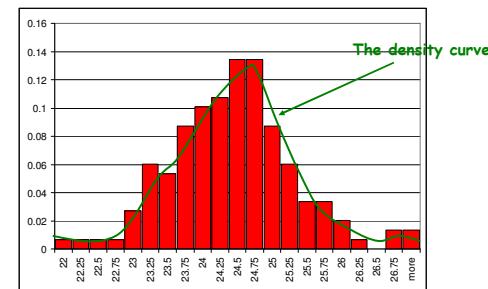

PUB/POS 316 Week 6

Navid Ghaffarzadegan

6

Distribution

- Example: Biological clocks

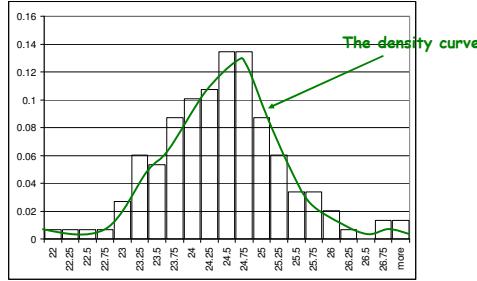

PUB/POS 316 Week 6

Navid Ghaffarzadegan

7

Distribution

- Example: Biological clocks

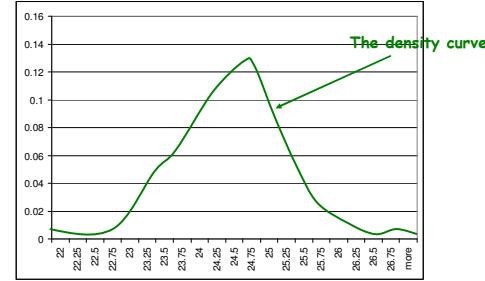

PUB/POS 316 Week 6

Navid Ghaffarzadegan

8

Distribution

Example: Biological clocks


PUB/POS 316 Week 6

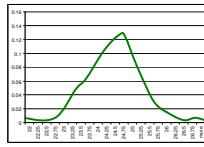
Navid Ghaffarzadegan

9

Distribution

Example: Biological clocks

PUB/POS 316 Week 6


Navid Ghaffarzadegan

10

Distribution

Example: Biological clocks

- The density curve help us to know about the distribution of the data

- One peak
- Bell shaped
- total area of 1 underneath it.
- We can approximately see the average, and quartiles

PUB/POS 316 Week 6

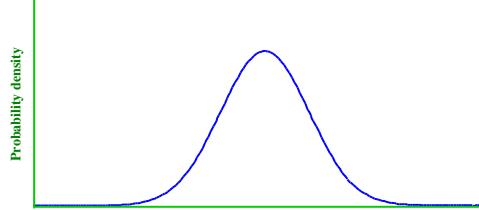
Navid Ghaffarzadegan

11

Distribution

Density curve is usually used to describe a pattern of distribution.

- Q: Draw a density curve for UAlbany students age.
- Q: Draw a density curve for time of entrance to our 316 class?
- ** A density curve has total area of 1 underneath it.
- Normal distribution** is a bell-shaped and symmetric density curve. Average is shown by μ and variance is shown by σ .
- Many times we assume a normal distribution for a data set.

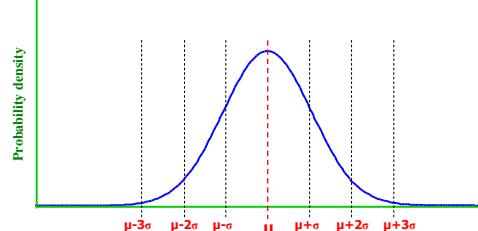

PUB/POS 316 Week 6

Navid Ghaffarzadegan

12

Distribution

- Normal distribution is a bell-shaped, symmetric density curve. Average is shown by μ and variance is shown by σ .

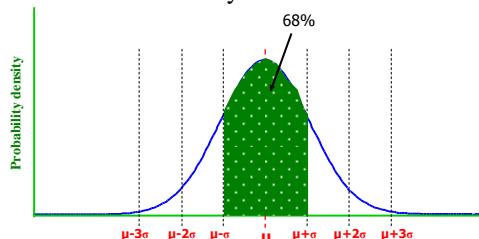

PUB/POS 316 Week 6

Navid Ghaffarzadegan

13

Distribution

- Normal distribution is a bell-shaped, symmetric density curve. Average is shown by μ and variance is shown by σ .

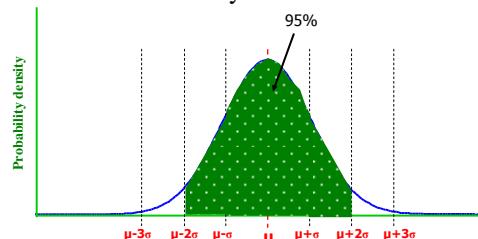

PUB/POS 316 Week 6

Navid Ghaffarzadegan

14

Distribution

- Normal distribution is a bell-shaped, symmetric density curve. Average is shown by μ and variance is shown by σ .

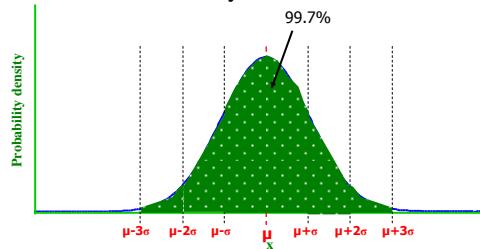

PUB/POS 316 Week 6

Navid Ghaffarzadegan

15

Distribution

- Normal distribution is a bell-shaped, symmetric density curve. Average is shown by μ and variance is shown by σ .

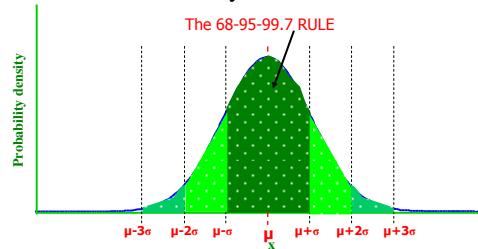

PUB/POS 316 Week 6

Navid Ghaffarzadegan

16

Distribution

- Normal distribution is a bell-shaped, symmetric density curve. Average is shown by μ and variance is shown by σ .



PUB/POS 316 Week 6

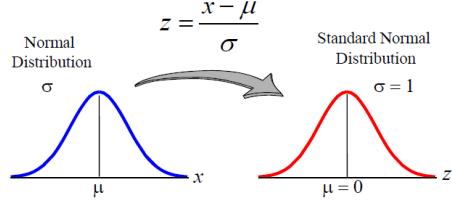
17

Distribution

- Normal distribution is a bell-shaped, symmetric density curve. Average is shown by μ and variance is shown by σ .

PUB/POS 316 Week 6

18

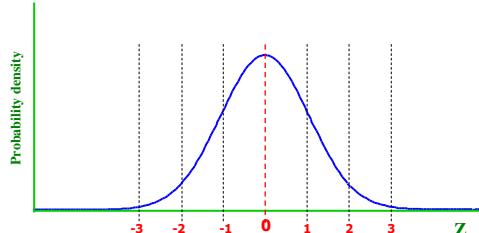

Distribution

- ** A density curve has total area of 1 underneath it.
- Normal distribution is a bell-shaped, symmetric density curve. Average is shown by μ and variance is shown by σ .
- Standard normal distribution is a normal distribution with $\mu=0$, $\sigma=1$.
- Many times we want to transform a normal distribution to a standard normal distribution in order to be able to say something about the distribution.
- Use: $Z=(X-\mu)/\sigma$

PUB/POS 316 Week 6

Navid Ghaffarzadegan

19

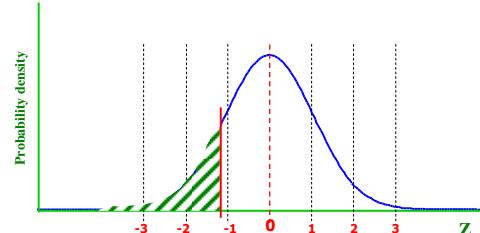

PUB/POS 316 Week 6

Navid Ghaffarzadegan

20

Distribution

- How to use the z-score table: Standard normal probabilities?

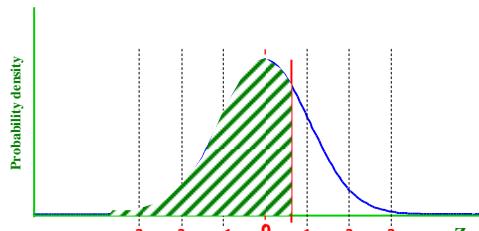


PUB/POS 316 Week 6

21

Distribution

- How to use the z-score table: Standard normal probabilities?

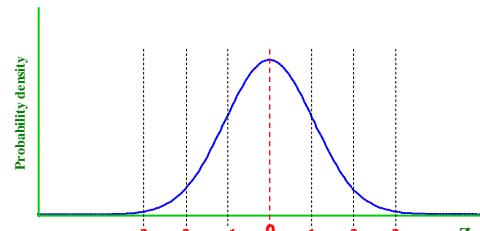

PUB/POS 316 Week 6

Navid Ghaffarzadegan

22

Distribution

- How to use the z-score table: Standard normal probabilities?



PUB/POS 316 Week 6

23

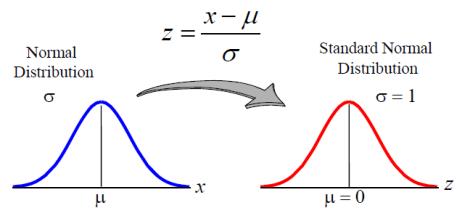
Distribution

- Example: find the area for $z=-2, -1.5, 0, 1, 1.13, 2.45, 3.42, 4.5$

PUB/POS 316 Week 6

Navid Ghaffarzadegan

24


Distribution

- Average of years of experience for UAlbany Professors is 12 years, with the standard deviation of 4 years. Assuming that the distribution of years of experience is a normal distribution, 1) draw a density curve and 2) find a z-variable which can transform this distribution to a Standard normal distribution.

PUB/POS 316 Week 6

Navid Ghaffarzadegan

25

One table!

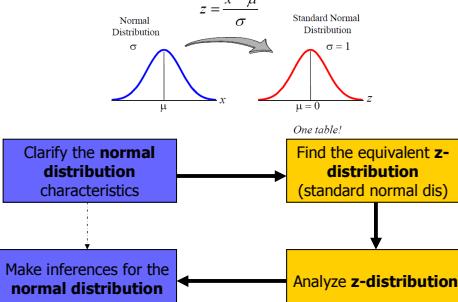
PUB/POS 316 Week 6

Navid Ghaffarzadegan

26

Distribution

- Average of years of experience for UAlbany Professors is 12 years, with the standard deviation of 4 years. Assuming that the distribution of years of experience is a normal distribution, 1) draw a density curve and 2) find a z-variable which can transform this distribution to a Standard normal distribution.

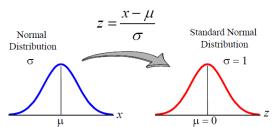

- 3. What percentage of the professors have less than 8 years of experience?

PUB/POS 316 Week 6

Navid Ghaffarzadegan

27

The Main Procedure



PUB/POS 316 Week 6

Navid Ghaffarzadegan

28

The Main Procedure

Clarify the **normal distribution** characteristics

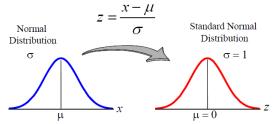
Find the equivalent **z-distribution** (standard normal dis)

Make inferences for the **normal distribution**

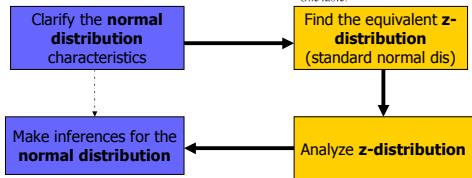
Analyze **z-distribution**

The Main Procedure

- Example A:
- Scores on SAT tests are approximately normally distributed with the mean of 500 and standard deviation of 100. What is the proportion of scores below 400?


The Main Procedure

- Example B:
- Scores on SAT tests are approximately normally distributed with mean of 500 and standard deviation of 100. What is the proportion of scores above 650?


The Main Procedure

- Example C:
- Scores on SAT tests are approximately normally distributed with mean of 500 and standard deviation of 100. What is the proportion of scores between 400 and 650?

The Main Procedure

One table!

